Норберт винер: рассеянный отец кибернетики

Литература[]

  • Винер Н. Кибернетика. — М.: Советское радио, 1968.
  • Винер Н. Некоторые моральные и технические последствия автоматизации.
  • Шеннон К. Работы по теории информации и кибернетике. — М.: Изд. иностр. лит., 1963. — 830 с.
  • Эшби У. Р. Введение в кибернетику. — М.: Изд. иностр. лит., 1959. — 432 с.
  • Пекелис В.Д. (сост.) Возможное и невозможное в кибернетике, Наука, 1964, 222 с.
  • Пекелис В.Д. (сост.) Кибернетика ожидаемая и кибернетика неожиданная, Наука, 1968, 311 с.
  • Пекелис В.Д. (сост.) Кибернетика. Итоги развития, Наука, 1979, 200 с.
  • Пекелис В.Д. (сост.) Кибернетика. Современное состояние, Наука, 1980, 208 с.
  • Марков А. А. Что такое кибернетика. — В кн.: Кибернетика, мышление, жизнь. — М.: Мысль, 1964
  • Петрушенко Л. А. Самодвижение материи в свете кибернетики. — М.: Наука, 1971
  • Кузин Л. Т. Основы кибернетики (в 2-х томах). — М.: Энергия, 1973
  • В. М. Глушков, Н. М. Амосов и др. «Энциклопедия кибернетики». Киев. 1975 г.
  • Герович В. А. Человеко-машинные метафоры в советской физиологии // Вопросы истории естествознания и техники. № 3, 2002. С. 472—506.
  • Гринченко С. Н. История человечества с кибернетических позиций // История и Математика: Проблемы периодизации исторических макропроцессов. — М.: КомКнига, 2006. — С. 38—52.
  • Грэхэм, Л. Естествознание, философия и науки о человеческом поведении в Советском Союзе. — М.: Политиздат, 1991. — 480 с.

Клаус Г. Кибернетика и философия = Kybernetik in philosophischer Sicht / Перевод с немецкого И. С. Добронравова, А. П. Куприяна, Л. А. Лейтес; редактор В. Г. Виноградов; Послесловие Л. Б. Баженова, Б. В. Бирюкова, А. Г. Спиркина. — М.: ИЛ, 1963.

Основы кибернетики. Математические основы кибернетики / Под ред. профессора К. А. Пупкова. — М.: Высшая школа.

Основы кибернетики. Теория кибернетических систем / Под ред. профессора К. А. Пупкова. — М.: Высш. школа, 1976. — 408 с. — (Учеб. пособие для вузов). — 25000 экз.

  • Поваров Г. Н. Ампер и кибернетика. — М.: Советское радио, 1977.
  • Теслер Г. С. Новая кибернетика. — Киев: Логос, 2004. — 401 с.
  • Кибернетика и информатика // Сборник научных трудов к 50-летию Секции кибернетики Дома ученых им. М. Горького РАН. — Санкт-Петербург, 2006. — 410 с.
  • Игнатьев М. Б. Информационные технологии в микро-, нано- и оптоэлектронике. — изд. ГУАП, Санкт-Петербург, 2008. — 200 с.

Кибернетика как наука, основные понятия кибернетики

Человек имел дело со сложными системами управления задолго до кибернетики (управление людьми, машинами; наблюдение за процессами управления в живых организмах и т.д.) Но кибернетика акцентировала внимание на общих закономерностях управления в различных процессах и системах, а не на их специфике. В «докибернетический» период знания о контроле и организации были «локальными», т.е

находились в отдельных областях. Так, уже в 1843 году польский мыслитель Б. Трентовский опубликовал малоизвестную ныне книгу «Отношение философии к кибернетике как искусству управления человеком». В своей книге «Опыт о философских науках» в 1834 году знаменитый физик Ампер дал классификацию наук, среди которых кибернетика — наука о текущей политике и практическом управлении государством (обществом) является третьей .

Развитие идеи управления приняло форму накопления, агрегирования отдельных данных. Кибернетика рассматривает проблемы управления на стабильном фундаменте и вводит в науку новый теоретический «каркас», новый понятийный, категориальный аппарат. Общая кибернетика обычно включает теорию информации, теорию алгоритмов, теорию игр и теорию автоматов, техническую кибернетику.

Инженерная кибернетика — это отрасль науки, которая занимается инженерными системами управления. Основными направлениями исследований являются проектирование и создание автоматизированных и автоматических систем управления, а также автоматизированных устройств и систем передачи, обработки и хранения данных.

Основные задачи кибернетики включают:

1) установление фактов, общих для всех управляемых систем или некоторого их набора;

2) Выявить ограничения, присущие управляемым системам, и определить их происхождение;

3) Распознавать общие закономерности управляемых систем;

4) Определение способов практического применения установленных фактов и найденных закономерностей1 .

Кибернетический подход к системам характеризуется рядом концепций. Основные понятия кибернетики: управление, управляемая система, управляющая система, организация, обратная связь, алгоритм, модель, оптимизация, сигнал и др. Для систем любого типа термин «управление» можно определить следующим образом: Управление — это воздействие на объект, выбранное из множества возможных воздействий на основе имеющейся у него информации, которое улучшает его функционирование или развитие. Управляемые системы всегда имеют набор возможных изменений, из которых делается выбор предпочтительного изменения. Если у системы нет выбора, то нельзя сказать, что она управляема.

Есть существенная разница между работой дачника, размахивающего лопатой, и манипуляциями регулировщика на дорожной развязке. Первый воздействует на орудие, а второй управляет движением транспортных средств. Управление — это осуществление изменений в системе или перевод системы из одного состояния в другое в соответствии с объективно существующей или выбранной целью.

Управление также означает предвидение изменений, происходящих в системе после применения управляющего воздействия (сигнала, несущего информацию). Любая управляющая система рассматривается как единое целое управляющей системы (субъекта управления) и управляемой системы (объекта управления). Управление системой или объектом всегда происходит во внешней среде. Поведение любой управляемой системы всегда изучается с точки зрения ее взаимоотношений с окружающей средой. Поскольку все объекты, явления и процессы взаимосвязаны и влияют друг на друга, необходимо учитывать влияние среды на объект при его выборе и наоборот. Не каждая система может обладать свойством управляемости. Необходимым условием для того, чтобы система обладала хотя бы потенциалом управляемости, является ее организованность.

Для того чтобы управление функционировало, то есть целенаправленно изменяло объект, оно должно содержать четыре необходимых элемента:

  1. каналы для сбора информации о состоянии среды и объекта.
  2. канал для воздействия на объект.
  3. цель управления.
  4. метод (алгоритм, правило) управления, который указывает, как достичь цели с учетом информации о состоянии среды и объекта.

Библиография

  • 1914 — «Упрощение в логике отношений»
  • 1930 — «Обобщенный гармонический анализ»
  • 1933 — «Интеграл Фурье и некоторые его приложения»
  • 1942 — «Экстраполяция, интерполяция и сглаживание стационарных временных рядов»
  • 1948 — «Кибернетика, или Управление и связь в животном и машине»
  • 1950 — «Человеческое использование человеческих существ: Кибернетика и общество»
  • 1953 — «Бывший вундеркинд: мое детство и юность»
  • 1956 — «Я — математик»
  • 1958 — «Нелинейные задачи в теории случайных процессов»
  • 1959 — «Искуситель»
  • 1964 — «Акционерное общество «Бог и Голем»: Обсуждение некоторых проблем, в которых кибернетика сталкивается с религией»

Цитаты

  • «Дисциплина учёного заключается в том, что он посвящает себя поискам истины.»
  • «Наиболее совершенной моделью кота является такой же кот, а лучше — он сам.»
  • «Учёные обычно отличаются излишней чувствительностью, и так же легко возбуждаются, как художники и поэты.»
  • «То, что мы пока не можем телеграфировать схему человека из одного места в другое, связано, в основном, с техническими трудностями.»
  • «В вероятностном мире мы уже не имеем больше дела с величинами и суждениями, относящимися к определенной реальной вселенной в целом, а вместо этого ставим вопросы, ответы на которые можно найти в допущении огромного числа подобных миров.»

Объекты изучения

Эта наука изучает всевозможные управляемые системы, используя понятия кибернетической системы и кибернетического подхода.

Кибернетический подход

Кибернетический подход состоит в замене исходной системы управления изоморфной моделью и дальнейшем изучении этой модели. Чтобы реализовать подход, применяется один из двух методов моделирования: компьютерное или имитационное. Оба метода подразумевают использование принципа «черного ящика». Экспериментатор моделирует внешнюю деятельность рассматриваемой системы, а ее структура, воспроизводящая поведенческие характеристики, остается скрытой.

Кибернетический подход позволяет исследовать несколько видов информационных моделей, отличающихся по запросам:

  • ответная реакция системы на воздействие внешних факторов,
  • оптимизация характеристик системы относительно функции ценности,
  • адаптивное управление,
  • прогноз динамики системного преобразования.

Информационная система

Кибернетическая система

Кибернетическая система представляет собой множество взаимосвязанных элементов, способных к приему, обработке, запоминанию и обмену информацией. Основные свойства подобных систем: адаптация, самоорганизация и самообучение с использованием накопленного опыта.

Кибернетика в целом рассматривает любые управляемые системы в абстрактной форме, не учитывая их материальную природу, поэтому системой может являться как вычислительная машина, так и общество либо его отдельные группы.

Направления

Кибернетические методы применяются во многих отраслях:

  • Биология. В рамках биологической ветви этой науки исследуются кибернетические системы в организмах. Также ученые решают вопросы передачи генной информации между поколениями живых организмов. В широком смысле биологическая кибернетика занимается исследованием методов моделирования структур и поведения биологических систем.
  • Медицина. Кибернетика в медицине помогает диагностировать заболевания при помощи вычислительной техники и используется для создания высокотехнологичных протезов.
  • Экономика. Методы данной науки используют для анализа всей экономики и отдельных ее элементов как сложной системы при помощи экономико-математического моделирования.
  • Инженерия. Кибернетика в инженерии применяется для анализа масштабных сбоев систем, вызванных мелкими и незначительными ошибками.
  • Информатика. В информатике ее методы используют для анализа информации и управления вычислительной техникой.
  • Психология. В психологии существует отдельное направление психологической кибернетики, в рамках которого изучается взаимодействие систем анализа, сфер сознания и бессознательного в ходе взаимодействия людей с различными системами, а также между собой. Кроме того, эта дисциплина значительно повлияла на развитие психологии труда и ее подвидов.

Особняком стоит направление чистой кибернетики, в рамках которого происходит понятийное изучение систем управления. Ее главная задача – обнаружение основных принципов таких систем.

Информационная система Внимание! Есть известная шутка про университет ядерной кибернетики, однако на данный момент не существует ни такого вуза, ни такого направления, как ядерная кибернетика

Основные разделы кибернетики

В качестве основных разделов кибернетики могут быть выделены:

  • теория информации
  • теория методов управления (программирования)
  • теория систем управления

Теория информации изучает способы восприятия, преобразования и передачи информации. Информация передается при помощи сигналов — физических процессов, у которых определенные параметры находятся в однозначном соответствии с передаваемой информацией. Установление такого соответствия называется кодированием.

Центральным понятием теории информации является мера количества информации, определяемая как изменение степени неопределенности в ожидании некоторого события, о котором говорится в сообщении до и после получения сообщения. Эта мера позволяет измерять количество информации в сообщениях подобно тому, как в физике измеряется количество энергии или количество веществ. Смысл и ценность передаваемой информации для получателя при этом не учитываются.

Теория программирования занимается изучением и разработкой методов переработки и использования информации для управления. Программирование работы любой системы управления в общем случае включает в себя:

  • определение алгоритма нахождения решений
  • составление программы в коде, воспринимаемом данной системой

Нахождение решений сводится к переработке заданной входной информации в соответствующую выходную информацию (команды управления), обеспечивающую достижение поставленные цели. Оно осуществляется на основе некоторого математического метода, представленного в виде алгоритма. Наиболее развитыми являются математические методы определения оптимальных решений. Такие, как линейное программирование и динамическое программирование, а также методы выработки статистических решений в теории игр.

Теория алгоритмов, используемая в кибернетике, изучает формальные способы описания процессов переработки информации в виде условных математических схем — алгоритмов. Основное место занимают здесь вопросы построения алгоритмов для различных классов процессов и вопросы тождественных (равносильных) преобразований алгоритмов.

   Программирование для управления

Основной задачей теории программирования является выработка методов автоматизации процессов переработки информации на электронных программно-управляемых машинах. Основную роль играют здесь вопросы автоматизации программирования. Т. е. вопросы составления программ решения различных задач на машинах с помощью этих машин.

С точки зрения сравнительного анализа процессов переработки информации в различных естественно и искусственно организованных системах кибернетика выделяет следующие основные классы процессов:

  • мышление и рефлекторная деятельность живых организмов
  • изменение наследственной информации в процессе эволюции биологических видов
  • переработка информации в автоматических системах
  • переработка информации в экономических и административных системах
  • переработка информации в процессе развития науки

Выяснение общих закономерностей этих процессов составляет одну из основных задач кибернетики.

Теория систем управления изучает структуру и принципы построения таких систем и их связи с управляемыми системами и внешней средой. Системой управления в общем случае может быть назван любой физический объект, осуществляющий целенаправленную переработку информации. Это может быть, нервная система животного, система автоматического управления движением самолета и др.).

Кибернетика изучает абстрактные системы управления, представленные в виде математических схем (моделей), сохраняющих информационные свойства соответствующих классов реальных систем. В рамках кибернетики возникла специальная математическая дисциплина — теория автоматов. Она изучает специальный класс дискретных систем переработки информации, включающих в себя большое число элементов и моделирующих работу нейронных сетей.

Кибернетика выделяет два общих принципа построения систем управления: обратной связи и многоступенчатости (иерархичности) управления. Принцип обратной связи позволяет системе управления постоянно учитывать фактическое состояние всех управляемых органов и реальных воздействий внешней среды. Многоступенчатая схема управления обеспечивает экономичность и устойчивость системы управления.

Предмет изучения

Царица цифрового мира – наука кибернетика. Этим термином объединяется множество понятий, в основном связанных с интеллектуальной техникой, роботами и автоматизированными системами. Но, грубо говоря, его восприятие немного искажено. Изначально кибернетика это, в общем смысле, наука об управлении, которая относилась к искусству государственных деятелей в древней Греции.

В наше же время понятие трансформировалось, приобретя новый, более широкий смысл. Теперь этой научной дисциплиной называют систему получения, хранения и преобразования информации для сложных, основанных на математических принципах действия, систем. К которым безусловно относятся и современные компьютерные и автоматические комплексы обработки данных. Но и не только.
Фантастическая картинка-иллюстрация кибернетики

В ней анализируются взаимосвязи происходящих процессов в комплексе особей живого мира, включая растительный и микробиологический

Не обходит кибернетика вниманием и социально-экономические структуры. К каким относятся предприятия, группы людей, отрасли промышленности, политические объединения, страны.

Системы изучения

Главное, что изучает кибернетика – логическое взаимодействие отдельных элементов системы для получения конкретного результата. Примером можно привести управленческую структуру производственного предприятия, отдел ПТО.
Упрощенная схема взаимодействия ПТО и остальных элементов предприятия

Он – часть общей системы завода, его функциональная единица. У организации есть план выполнения, который разработан в соответствии с ресурсными возможностями и максимальной прибылью. Задача отдела выполнить документационную и проектную работу по подготовке всех этапов производства.

То есть, в рамках кибернетики, в ПТО приходит указание на выпуск такого-то количества продукции определенного вида. Отдел разрабатывает документы – планы и схемы самих изделий, акты на закупку исходных ресурсов, сметы. Результаты деятельности от этого логического элемента предприятия отправляются поставщикам, в производственные цеха, бухгалтерию. Вот пример функциональной системы, изучаемой кибернетикой, причем весьма далекий от технологии как таковой.

В описанном случае не нужно знать об оснащении цехов (токарные станки, пилорама или другого), форме прихода указаний от руководства (почта, электронное сообщение, курьер), или, к примеру, о валюте расчетов – это рассматривается в рамках других наук.

Элементы и их взаимодействие, исследуемые в рамках кибернетики

В общем виде, область рассмотрения этой наукой – взаимодействие частей системы. Каждая из которых довольно сложна и описывается различными дискретными математическими моделями, входящими в дисциплины теории игр, информации и алгоритмов.

Комплексный элемент структуры обрабатывает входной сигнал в зависимости от своего строения, которое моделируется в рамках кибернетики методами теории графов, кодирования, управляющих систем и комбинаторного анализа, преобразует его и выдает собственный результат, для последующего разбора или выполнения другой частью системы.

Ученые-кибернетики

Управление кибернетическими механизмами регулирования было еще заложено в устройствах Ктесибия, жившего в 2-1 веках до нашей эры, и Герона Александрийского (около 1 в. до н.э.).

В средние века основы дисциплины применялись в изготовлении часовых и навигационных приборов или различных видов мельниц, где требовалось автоматическая регулировка работы устройств.

Основной рассвет систематизации кибернетики возник в век пара, относящий к технологическому периоду использования его в устройствах движения. Первый автоматический регулятор работы паровых двигателей запатентован Джеймсом Уаттом (1736-1819), они же, в свою очередь, дали большой толчок процессу индустриализации общества. Теоретические работы по кибернетическим системам тех лет относят к статье Джеймс Клерк Максвелла (1831-1879), посвященной регуляторам.
Фотография Джеймса Клерка Максвелла

Дальнейшее развитие дисциплина получила в трудах И.А. Вышнеградского (1832-1895). Сравнение естественных биологических систем и их реакций изучалось, в рамках кибернетики, И.П. Павловым (1849-1936) и П.К. Анохиным (1898-1974). Окончательное математическое обоснование наука получила в работах А. М. Тьюринга, А. Н. Колмогорова, Э. Л. Поста, В. А. Котельникова, А. Чёрча.

Современное понимание кибернетических систем и информатики было определено в рамках создания первой электронной вычислительной машины, прообраза компьютера, Нобертом Винтером, В. Бушем, Дж. фон Нейманом, У. Мак-Каллок и А. Розенблют. Итог работы этой группы относительно реальных технических и практических задач был опубликован Винтером в его книге «Кибернетика», изданной в 1948 году.
Ноберт Винтер

Для сохранения истины, хотелось бы вспомнить о том, что устройства обработки информации существовали еще до трудов Н. Винтера, только они не получали необходимого теоретического обоснования, требуемого в рамках научной дисциплины. В общность таких приборов входят различные арифмометры, механические вычислительные машины Чарльза Бэббриджа и станки Жозефа Мари Жакара, регуляторы множества изобретателей и созданные Конрадом Эрнст Отто Цузе релейные компьютеры.

Примечания Править

  1. Jean-Pierre Dupuy, «The autonomy of social reality: on the contribution of systems theory to the theory of society» in: Elias L. Khalil & Kenneth E. Boulding eds., Evolution, Order and Complexity, 1986.
  2. Peter Harries-Jones (1988), «The Self-Organizing Polity: An Epistemological Analysis of Political Life by Laurent Dobuzinskis» in: Canadian Journal of Political Science (Revue canadienne de science politique), Vol. 21, No. 2 (Jun., 1988), pp. 431—433.
  3. Kenneth D. Bailey (1994), Sociology and the New Systems Theory: Toward a Theoretical Synthesis, p.163.
  4. Kenneth D. Bailey (1994), Sociology and the New Systems Theory: Toward a Theoretical Synthesis
  5. Kevin Kelly (1994) «Out of control: The new biology of machines, social systems and the economic world» Addison-Wesley ISBN 0-201-48340-8

Чем занимаются кибернетики?

Кибернетик – это ученый, который занимается целым спектром разнообразных исследований:

  • Искусственный интеллект.
  • Человеческий организм.
  • Сложные информационные системы, такие как компьютеры и их сети.

Кибернетика делится на множество разнообразных отраслей, которые базируются на связях между определенными научными дисциплинами. Например, есть психологичная кибернетика, экономическая или техническая. В общем, существует целый спектр отраслей, на которые распространяется кибернетика. Это очень распространённая наука, которая используется везде. Давайте более детально разберемся с ветками данной дисциплины.

↑мЮСВМШЕ ЖЕМРПШ Х НПЦЮМХГЮЖХХ

мЮГБЮМХЕ дЕИЯРБХЪ
1.

йЮТЕДПЮ ЛЮРЕЛЮРХВЕЯЙНИ РЕНПХХ ХМРЕККЕЙРСЮКЭМШУ ЯХЯРЕЛ ЛЕУЮМХЙН-ЛЮРЕЛЮРХВЕЯЙНЦН ТЮЙСКЭРЕРЮ лНЯЙНБЯЙНЦН ЦНЯСДЮПЯРБЕММНЦН СМХБЕПЯХРЕРЮ ХЛЕМХ л.б. кНЛНМНЯНБЮ

рХО: сВЕАМНЕ СВПЕФДЕМХЕ

йЮТЕДПЮ лЮрхя ЯНГДЮМЮ Б 1991 ЦНДС. нМЮ БУНДХР Б ЯНЯРЮБ ЛЕУЮМХЙН-ЛЮРЕЛЮРХВЕЯЙНЦН ТЮЙСКЭРЕРЮ лцс ХЛ.л.б.кНЛНМНЯНБЮ Х ОПЕДЯРЮБКЪЕР ЯНАНИ ЕДХМЯРБЕММСЧ Б пНЯЯХХ ЯРПСЙРСПС, БЕДСЫСЧ ОНДЦНРНБЙС ЯОЕЖХЮКХЯРНБ-ЛЮРЕЛЮРХЙНБ Б НАКЮЯРХ ЛЮРЕЛЮРХВЕЯЙНИ РЕПХХ ХМРЕККЕЙРСЮКЭМШУ ЯХЯРЕЛ Х ЕЕ ОПХКНФЕМХИ. мЮ ЙЮТЕДПЕ ПЮАНРЮЧР АНКЕЕ 29 ЯНРПСДМХЙНБ, Б РНЛ ВХЯКЕ 10 ДНЙРНПНБ Х 12 ЙЮМДХДЮРНБ МЮСЙ. йЮТЕДПЮ ХЛЕЕР НОШР ПЮГПЮАНРЙХ Х ОЕПЕДЮВХ РЕУМНКНЦХИ ГЮПСАЕФМШЛ ТХПЛЮЛ LSI Logic (яью), Intel Corp. (яью), Link&Link (цЕПЛЮМХЪ), ПНЯЯХИЯЙХЛ НПЦЮМХГЮЖХЪЛ. гЮБЕДСЧЫХЛ ЙЮТЕДПНИ ЪБКЪЕРЯЪ ОПНТЕЯЯНП бЮКЕПХИ аНПХЯНБХВ йСДПЪБЖЕБ. йЮТЕДПЮ ЪБКЪЕРЯЪ ЯНГДЮРЕКЕЛ МЮСВМН-НПЦЮМХГЮЖХНММНЦН ЙНЛОКЕЙЯЮ, Б ЙНРНПШИ БУНДЪР, МЮПЪДС Я лЮрхя, КЮАНПЮРНПХЪ ОПНАКЕЛ РЕНПЕРХВЕЯЙНИ ЙХАЕПМЕРХЙХ, лНЯЙНБЯЙХИ МЮСВМШИ ЖЕМРП ОН ЙСКЭРСПЕ Х ХМТНПЛЮЖХНММШЛ РЕУМНКНЦХЪЛ (лмж йхр), МЮСВМН-СВЕАМШИ ЖЕМРП «хМРЕККЕЙРСЮКЭМШЕ ЯХЯРЕЛШ Х МЕВЕРЙХЕ РЕУМНКНЦХХ». йЮТЕДПЮ РЕЯМН ЯНРПСДМХВЮЕР Я МЮСВМН-ОПНХГБНДЯРБЕММШЛ ЖЕМРПНЛ «CD-ROM йКСА», хМЯРХРСРНЛ ОПХЙКЮДМНИ ЛЮРЕЛЮРХЙХ Х ХМТНПЛЮРХЙХ юрм пт, ПНДЯРБЕММШЛХ ОНДПЮГДЕКЕМХЪЛХ лцс.

рЕКЕТНМ:
8-495-939-46-37
яЮИР:
http://intsys.msu.ru/

йЮРЕЦНПХХ ГМЮМХИ:
йХАЕПМЕРХЙЮ, лЮРЕЛЮРХВЕЯЙЮЪ ЙХАЕПМЕРХЙЮ

2.

кЮАНПЮРНПХЪ ОПНАКЕЛ РЕНПЕРХВЕЯЙНИ ЙХАЕПМЕРХЙХ ЛЕУЮМХЙН-ЛЮРЕЛЮРХВЕЯЙНЦН ТЮЙСКЭРЕРЮ лНЯЙНБЯЙНЦН ЦНЯСДЮПЯРБЕММНЦН СМХБЕПЯХРЕРЮ ХЛЕМХ л.б.кНЛНМНЯНБЮ

рХО: мЮСВМН-ХЯЯКЕДНБЮРЕКЭЯЙНЕ СВПЕФДЕМХЕ

рЕКЕТНМ:
8-495-939-45-04
яЮИР:
http://intsys.msu.ru/

йЮРЕЦНПХХ ГМЮМХИ:
йХАЕПМЕРХЙЮ, лЮРЕЛЮРХВЕЯЙЮЪ ЙХАЕПМЕРХЙЮ

Научная деятельность

За первые 5 лет работы в Массачусетском технологическом институте ученый выпустил 29 научных статей, освещающих разные области математики. Еще в начале 1920-х годов американец увлекся работой Альберта Эйнштейна, в которой тот исследовал движение частицы пыльцы под воздействием нескольких молекул воды. До Эйнштейна это явление впервые зафиксировал ботаник Роберт Броун в 1827-м, но формально в математике оно не было рассмотрено.

Винера заинтересовал феномен, и вскоре мужчина создал математическую формулу, получившую в дальнейшем название винеровского процесса. В 30-х годах ученый разработал теорему Винера – Хинчина, в которой рассмотрел корреляцию между сигналами и задержанными копиями этих сигналов в зависимости от типа задержки.

Мужчина мечтал приносить пользу стране во время военных катаклизмов. Когда началась Первая мировая война, Норберт захотел воевать, но не прошел комиссию из-за зрения. Во время Второй мировой исследователь занялся разработками аппарата для систем наведения зенитного огня. В итоге изобретение положило начало новой странице в научной биографии американца — изобретению кибернетики.

Глубоко погружаясь в изучение кибернетических законов, математик ввел в научный обиход понятие обратной связи, которое позднее нашло проявление в искусственном интеллекте, информационных процессах, нейрологии и других областях. Саму кибернетику Винер определил как науку о связи и управлении и в живых организмах (биологических системах), и в машинах (искусственных системах).

За время научной деятельности мужчина написал множество книг, в которых рассматривал проблемы техники и общества. Так, в труде «Корпорация “Бог и Голем”» ученый в контексте религиозного мировоззрения рассматривал сложности, с которыми человечество вынуждено будет столкнуться по мере развития интеллектуальных машин.

В центре исследования — вопросы креации. Математик задается вопросами: если бог создал человека, человек — машину, не окажется ли способной к воспроизведению и сама техника. Искусственный интеллект, постепенно охватывая сферы человеческой жизни, может изменить основные моральные и этические категории.

Фразы из этой книги стали популярными цитатами. Также известность получили труды «Наука и общество», «Кибернетика и общество». Изучение Винером информатики позволило провести параллели с научной деятельностью француза Блеза Паскаля, механика и физика, оказавшегося создателем первых образцов счетной техники.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector